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Abstract

The problem of the integration of the static governing equations of the uniform Euler-Bernoulli beam with discon-
tinuities is studied. In particular, two types of discontinuities have been considered: flexural stiffness and slope discon-
tinuities. Both the above mentioned discontinuities have been modeled as singularities of the flexural stiffness by means
of superimposition of suitable distributions (generalized functions) to a uniform one dimensional field. Closed form
solutions of governing differential equation, requiring the knowledge of the boundary conditions only, are proposed,
and no continuity conditions are enforced at intermediate cross-sections where discontinuities are shown. The continu-
ity conditions are in fact embedded in the flexural stiffness model and are automatically accounted for by the proposed
integration procedure. Finally, the proposed closed form solution for the cases of slope discontinuity is compared with
the solution of a beam having an internal hinge with rotational spring reproducing the slope discontinuity.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Research fields such as fracture mechanics might require study of beams showing singularities along the
beam span. Moreover, cases showing abrupt changes of the cross-section or the Young’s modulus or the
presence of internal constraints in single span beams might result in the appearance of discontinuities in
the kinematic solution functions such as curvature and slope functions.

The problem of finding the solution of beams showing physical or geometrical discontinuities along the
beam span has been treated in the literature by Yavari et al. (2000, 2001) and Yavari and Sarkani (2001).
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However, in these cases integration is usually performed by seeking continuous solution functions over
domains between discontinuities and imposing continuity conditions. Procedures based on integration over
the entire beam span, however requiring enforcement of the continuity conditions, have been also proposed
in the literature by Falsone (2002). As a result the computational effort depends on the number of discon-
tinuities and no closed form solutions, dependent on boundary conditions only, have been proposed.

However, for the case of singularities in loading conditions only, such as concentrated forces and
moments, the adoption of distributions (generalized functions) allowed in the literature the integration
of the governing differential without enforcement of additional conditions at cross-sections where singu-
larities appeared (Yavari et al., 2000, 2001; Yavari and Sarkani, 2001; Falsone, 2002). The distribution
theory to model singularities in geometrical or physical beam properties have been adopted by Yavari
et al. (2001) for both Timoshenko and Euler-Bernoulli beams. They showed that in the case of singular-
ities the governing differential equilibrium equation for Timoshenko beam can always be expressed in
terms of a single deflection and single slope functions, while for Euler—Bernoulli beam for uniform beams
only, since the product of two generalized functions is not defined in the traditional distribution theory.
In any case, whatever solution procedure is adopted, the Laplace transform method (Kanwal, 1983) or
the more advantageous auxiliary beam method proposed by Yavari et al., the continuity conditions have
to be enforced.

In this paper the problem of the integration of the static differential governing equation of the uniform
Euler-Bernoulli beam showing discontinuities is studied. In particular, two types of discontinuities have
been considered: flexural stiffness discontinuity and slope discontinuity. Aim of this work is proposing
closed form solutions of the governing equation of the beam as functions of the boundary conditions
and of the discontinuity intensity able to account for the two types of discontinuities.

The proposed approach is based on the adoption of the distribution (generalized function) theory, where
the discontinuities to be considered are accounted for as ad hoc singularities of the flexural stiffness. More
precisely, the above mentioned singularities are obtained by modeling the flexural stiffness by means of suit-
able distributions. In particular flexural stiffness discontinuity is modeled by the unit step function and
slope discontinuity is modeled as Dirac’s delta distribution appearing in the flexural stiffness function.

It has to be noted that slope discontinuity is usually obtained by means of an internal hinge. Hence, in
this paper, the proposed closed form solutions for the above mentioned case is compared with solution of a
beam endowed with internal hinge with rotational spring.

Examples of Euler—Bernoulli beams with single discontinuity are presented in order to comment the ex-
pected results.

2. Euler-Bernoulli beam with singular flexural stiffness

In this section the static governing equations of the Euler—Bernoulli beam model are recalled and
adopted in order to treat the case of beams with variations of flexural stiffness according to singular con-
ditions only, which will be modeled by means of the distribution theory.

The static governing equations of the Euler—Bernoulli beam model are written as follows:

Vi) =~ M) = V() (1))
1) = o (19

1) =o' (x);  ox) = —u'(x) (1d.e)
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where g(x) is the external load, V(x) and M(x) are the shear force and the bending moment, respectively,
u(x), ¢(x) and y(x) are the deflection, slope and curvature functions, respectively, and the prime denotes
differentiation with respect to the spatial coordinate x spanning from 0 to the length / of the beam.

The sets of differential Eqgs. (1a,b) and (1d.,e) represent the equilibrium and compatibility equations,
respectively, while the algebraic Eq. (1c) is the constitutive equation relating curvature and bending mo-
ment through the spatial variable flexural stiffness E(x)I(x) defined by means the Young’s modulus E(x)
and the inertia moment /(x).

Combining the compatibility and constitutive equations given by Eq. ((1c)—(e)) yields to the following
second order differential equation relating the bending moment with the second derivative of deflection:

EMI@)u" () = ~M(x) 2)

Accounting for the equilibrium equations also, given by Eq. (1a,b), yields to the Euler-Bernoulli fourth or-
der differential governing equation, in terms of deflection only, as follows:

[E) ()" ()] = g(x) 3)

where the spatial variability of the flexural stiffness has to be accounted for.

Integration of Eq. (2) is usually performed for statically determinate beams in view of the knowledge of
the bending moment M(x) through the equilibrium equations, otherwise the more general fourth order dif-
ferential Eq. (3) has to be integrated. In this work integration of Eq. (3) will be performed for two cases of
flexural stiffness, however the second order differential Eq. (2) will be helpful in order to clarify the prop-
erties of the assumed flexural stiffness functions.

Let us consider, in particular, the cases of uniform Euler-Bernoulli beams with flexural stiffness present-
ing singularities according to the following form:

E(x)I(x) = Eolo[1 — yD(x — x0)] 4)

The flexural stiffness singularity, representing a decrement of intensity y at abscissa 0 < xog </ of the con-
stant flexural stiffness Eyly, has been modeled by means of a distribution centered at x,, also called gener-
alized function in the literature, here indicated as D(x — xg). In what follows two cases of distributions, able
to reproduce physical circumstances for the Euler-Bernoulli beam, will be considered. More precisely, the
first case to be treated is

D(x —x9) = U(x — xo) (5)

where U(x — xp) indicates the well known unit step distribution, also known in the literature as Heaviside’s
function. Substitution of Eq. (5) into Eq. (4) provides the following form for the flexural stiffness of the
beam:

E(x)I(x) = Eolo[l — yU(x — x0)] (6)

representing a beam model with abrupt variation of the cross-section or of the Young’s modulus, resulting
in a discontinuous flexural stiffness at the abscissa x; and constant elsewhere.
The second case to be analyzed is concerning with the choice:

D(x — x0) = 6(x — xp) (7)
where d(x — xg) is the Dirac’s delta distribution centered at x,. Substitution of Eq. (7) into Eq. (4) provides
the following form for the flexural stiffness of the beam:

E(x)I(x) = Eoly[l — yd(x — x¢)] (8)
representing a beam model whose flexural stiffness is given by a constant value Eyl, with the superimposi-
tion of a Dirac’s delta distribution. Interpretation of such a flexural stiffness is not as straightforward as the
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previous case. However, substitution of Eq. (8) into the governing equation (3) and double integration lead
to the following equation:

b1+ byx 4¢P (x)

P ()0 ) ©)

u“(x)

by and b, being integration constants and ¢*(x) a function evaluated as a primitive of order k of the exter-
nal load function ¢(x). In particular ¢”\(x) appearing in Eq. (9) is expected to be continuous even for dis-
continuous and concentrated vertical loads, except for load cases presenting concentrated moments
(containing a doublet distribution) leading to the presence of a discontinuity in ¢™{(x).

In order to infer a description of the curvature function y(x) = — u'(x) of the beam, as a consequence of
the flexural stiffness given by Eq. (8), both sides of Eq. (9) are multiplied by d(x — x¢) as follows:

x+g?(x
W (x)3(x — xo) = %}tq()au — xo) + 7 (1)S(x — x0)8(x — x0) (10)

The first term on the right hand side of Eq. (10) can be considered as a Dirac’s delta distribution since ¢**}(x)
is either a continuous function or, for those cases arising from the presence of concentrated external mo-
ments, the discontinuities are assumed in the region [0,x;] U [xj, /], hence never coincident with xj.

Rather, attention has to be devoted to the second term on the right hand side of Eq. (10) in which, under
the assumption of the associative property for products of distributions, the product of two Dirac’s deltas
appears. Definition of the product of Dirac’s deltas is still an open question in the mathematical literature.
In order to give Eq. (10) some mathematical meaning a theory allowing the product definition of at least
two Dirac’s deltas has to be adopted. In this paper the following definition of the product of two Dirac’s
deltas proposed by Bagarello (1995, 2002), described in Appendix A, is adopted:

O(x — x0)0(x — x0) = Ad(x — xp) (11)

where A is a positive constant for which the value 2.013 has been adopted (Appendix A).
In view of Eq. (11), Eq. (10) leads to the following relationship:

x + g% (x
" (x)3(x —x0) :%;;q()é(x—xo) AU ()3 (x — x0) (12)

and after simple algebra the following expression can be obtained:

1 by +byx + ¢ (x)
1l oy — 1+ b _
u (x)0(x — xo) T Els o(x — xo) (13)

Finally, substitution of Eq. (13) into Eq. (9) gives the following explicit expression of the curvature for the
considered beam model:

by + byx + ¢ (x)

1) = —u(e) =~ L (1 e, ) (13

Eq. (14) suggests a curvature function given as the superimposition of a Dirac’s delta distribution, centered
at xo, to the function (b; + box + ¢'*\(x))/Eyl,, surely continuous at x,. As a consequence the model under
study is concerning with a slope function ¢(x), primitive of y(x) according to Eq. (1d), presenting a discon-
tinuity at xo; hence the choice of the flexural stiffness given in Eq. (8) allows the treatment of the case of a
beam with an internal hinge at the abscissa xy.
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3. Euler—Bernoulli beam with jump discontinuities in flexural stiffness

The case of flexural stiffness provided by Eq. (6) presenting a jump discontinuity at x, and constant for
x # xo is considered in this section by means of the superimposition of a unit step function
D(x — x9) = U(x — x¢) to the uniform flexural stiffness Eyl,. The governing equation (3) assumes the fol-
lowing form:

[Eolo(1 = U (x —x0) )" ()] = g (x) (15)

It has to be noted that, for the case under study, the physical constraint of non-negativity for the flexural
stiffness requires the condition y < 1 for the discontinuity intensity.
A double integration of differential equation (15) leads to

uII (x) 1

= v+ aP(x
Bl UG- ) (16)

where b; and b, are integration constants. After simple algebra Eq. (16) can be rewritten as follows:

1 g% (x) v
1(x)=—u (x) = —(203+6c4x+—) <1 +—U(x—x0)> (17)
Eo[o 1-— Y
where the following positions have been accounted for

T 2B, ' 6E,

The first integration of Eq. (17) provides the slope function as follows, where properties of distributions
have been accounted for

(18a,b)

C3

o(x) = —u'(x)
. Bl (x
=—cy—2c;4 [x + ] i » (x =x)U(x —xo)] — 3¢y {XZ + 1 i " (¥ —x)Ulx _xO)] B qu(Io)
7 ¢¥&) — ¢Px)
T R, )

and the subsequent integration provides the following closed form expression for the deflection function:

Y
1=y
x) g — ¥ (x0) — ¢ (x0) (x — x0)
Eoly  1—y Eoly

Y

-7

ux)=c1+cex+c [xz + (x— xO)ZU(x — xo)] + ¢4 [x3 + ] (x3 — 3x§x + 2x(3)) Ux — xo)]

U(x — xo) (20)

In Egs. (19) and (20) ¢; and ¢, are further integration constants. The integration constants c¢;, ¢,, ¢3, ¢4 can
be obtained by means of enforcement of boundary conditions.

It has to be noted that the solution functions, in view of the discontinuity of the flexural stiffness,
show continuous deflection and slope functions but to a curvature function showing a discontinuity at
X0-

Multiplication of the curvature function given by Eq. (17) by the flexural stiffness showing the jump dis-
continuity given by Eq. (6) provides the following bending moment expression:

M(x) = E(x)I(x)x(x) = —Eolo (263 + 6cax + q;jf;?) (21)
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Differentiation of Eq. (21) leads to the shear force function as follows:

1
V(x) = M'(x) = —Eol, <6C4 4 ](x)) (22)
Eyly
Egs. (21) and (22) provide bending moment and shear force as continuous functions, except for possible
discontinuities contained by ¢!'(x) and ¢**!(x) functions due to the external loads, as expected. Moreover, it
has to be noted that the y constant representing the discontinuity intensity of the flexural stiffness does not
explicitly appear in Egs. (21) and (22) but its influence is contained in the ¢3, ¢4 constants by means of
enforcement of the boundary conditions. Hence, on the basis of the proposed integration procedure, it
has been possible to transfer the influence of the jump discontinuities of the flexural stiffness to the bound-
ary conditions, at least as far as the bending moment and shear force are concerned. For statically deter-
minate beams, since M(x) and V(x) are independent of the flexural stiffness, the ¢3 and ¢4 constants are
expected to be independent of y and x,.

4. Euler-Bernoulli beam with slope discontinuities

In this section the case of flexural stiffness provided by Eq. (8) with the adoption of a Dirac’s delta dis-
tribution D(x — xg) = d(x — xp) at x is considered. The governing equation (3) assumes the following form:

[Eolo(1 = 75(x — x0))u" (x)]" = q(x) (23)
According to the integration procedure presented in Appendix B, the solution of the fourth order gov-

erning differential Eq. (23) can be written as follows:
u(x) = ¢ + crx 4 c3x* + cqx® +di (x) + da(x)x + ds(x)x* + dy(x)x* (24)

being ¢y, ¢, ¢3, ¢4 integration constants and d;(x), d»(x), d3(x), d4(x) functions that can be evaluated as solu-
tion of first order differential Eq. (A2.14).
Integration of Eq. (A2.14) is performed by means of integration by parts only, leading to

N — 302 (02 + 645 () — 644 (x
d1<x) —_ _q ( ) 3q ( )6E:}06q ( ) 66] ( )—y/u”(x)xé(x—xo)dx
- é (™ ()x — 30 ()220 (x — x0) + 1" (1) (x — x0)] (25a)
W02 — 202 () 4 203 (x
dz(x) :q ( ) 2§E0(IO) +2¢q ( )—i—y/u”(x)é(x—xo)dx
+ % [(@™ (x)x — 2" (x))x5(x — xo) + u" (x)x20" (x — xo)] (25b)
_ g")x —gPx) y o I 11 1
dy(x) = T EL 2 [(@™ (x)x — u" (x))0(x — xo) + u" (x)x5" (x — x0)] (25¢)
Uy
dy(x) = %E(E[Z + % [1™ (x)3(x — xo) 4+ 1™ (x)6" (x — x0)] (25d)

where 6'(x — xo) is the first distributional derivative of the Dirac’s delta distribution, also called doublet
distribution.

Application of integration by parts to Eq. (A2.14) left unsolved in Eq. (25) the integrals
Ju"(x)xd(x — xo)dx and [u™(x)d(x — xo)dx. However, according to Eq. (13), the product u"(x)d(x — xo)
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is coincident with a Dirac’s delta centered at x,, hence, by applying the usual rules of distributions, the fol-
lowing expressions holds (Guelfand and Chilov, 1972; Hoskins, 1979; Lighthill, 1958; Zemanian, 1965):

/uH(x)xé(xfx )dx:; 2¢3 + 6cyx +q[2](x0) xoU (x — xp) (26a)
0 T (5 o+ T )X 0
[t —xpa= 1 2es + 6cs + 0D e - xy) (26b)
0 [ A \ 25 Wo+ e 0

where Eq. (18) have been accounted for.
Substitution of Egs. (25) and (26) into Eq. (24) provides the following closed form expression for the
deflection function:

Y
1 —94
[4 2 —_
g (x) 74 (x0)(x — xo)
Ulx— 27
+ E()Io + 1— VA E()I() (x xO) ( )
where the constants ¢, ¢,, ¢3, ¢4 can be obtained by means of enforcement of boundary conditions.
The function given by Eq. (27) is the sought single continuous deflection function, for the case under
study, leading to the following discontinuous slope function:

L
1—94 0

u(x) = c1 + ex + e [x2+2 (x—xO)U(x—xo)} +e [ﬁ +6 (x — x0)U(x — xo)

o(x) = —ul(x)
= —cy — 2¢; [x—i—ﬁU(x—xo)} — 3¢y |:x2 _|_21 _yyAxOU(x —Xo):|
qm (X) M q[Z] (XO) U()C o Xo) (28)

- E()]() _1—’))14 E()Io

A further differentiation of Eq. (28) provides the closed form expression for the curvature function:

1) = —u'(x) = — (203 + 6eax + ";(I’(‘))) [1 +1 _VV 0= xo)] (29)

Bending moment function is obtained by multiplying the curvature function given by Eq. (29) by the
flexural stiffness given by Eq. (8) as follows:

2l(x
M(x) = E(x)I(x)1(x) = —Eolo (2(:3 + 6eax + "EOSO)) (30)

where Eq. (11) has been accounted for. Shear force function is obtained by means of differentiation of Eq.
(30) as follows:

(x
V(x) = M'(x) = —Eol, <6c4 + qEO(IO)> (31)

Egs. (30) and (31) provide bending moment and shear force as continuous functions, except for possible
discontinuities contained in ¢/'}(x) and ¢**!(x) functions due to the external loads, as expected.

It has to be noted that Egs. (30) and (31) coincide formally with Egs. (21) and (22), the difference appear-
ing in the values of ¢3 and ¢4 affected by the singularity intensity y of the flexural stiffness, which does not

appear explicitly in Egs. (30) and (31), by means of enforcement of the boundary conditions. However, for
statically determinate beams, the flexural stiffness singularity does not affect the bending moment and the
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shear force, hence the ¢; and ¢4 constants appearing in Egs. (21) and (22) are expected to be coincident with
those of Egs. (30) and (31) and independent of 7.

The slope function (28) presents a jump discontinuity Ag(xg) at xo which is explicitly evaluated as
follows:

P(x,
Ap(xo) = p(xg) — o(xy) = (203 —+ 6c4x0 + 7 )> (32)

Y
1-— ’))A Eo[()
being xj and x; the abscissas to the right and to the left of the position x, where the discontinuity is located.
A comparison of Eq. (32) with the bending moment given by Eq. (30) evaluated at x, leads to

7 M(x)

194 Eol, (33)

Ap(xo)

Eq. (33) corresponds to the presence of an internal hinge at x, endowed with rotational spring with stiffness
k, given as
1—94
ky = —2 Eol, (34)
Y
An inspection of Eq. (34) shows that for y = 1/4 an internal hinge with no rotational spring is recovered.
For y =0 Eq. (34) provides an infinite stiffness k,, representing the absence of any discontinuity for the
flexural stiffness and the uniform Euler—Bernoulli beam is recovered. For y <0 Eq. (34) provides a negative
stiffness k,, which does not possess any physical meaning. It can hence be concluded that for the case under
study the discontinuity intensity y is subject to the 0 < y < 1/4 constraint.

5. Applications

Applications of the closed form solutions presented in Sections 3 and 4 are here presented and discussed
for the clamped-clamped beam, subjected to a uniform vertical load ¢, depicted in Fig. 1. In particular the
following data have been assumed:

[ =500 cm; Eo=21x10"kN/em? I,=5224cm*; ¢=0.015kN/cm

5.1. Along beam discontinuity

In this section the results concerning the two different types of discontinuities, treated in this paper, lo-
cated at 0 < xo </ are reported. Cases of boundary discontinuity, located at xo = 0 or xo =/, deserve par-
ticular attention and will be discussed in the next section. In particular the position xy = 300cm of the
discontinuity is assumed.

N

x E(x)I(x)

A l A

Fig. 1. Clamped—clamped beam under study.
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(1_7)Eo]0

A ! +

Fig. 2. Clamped—clamped beam with flexural stiffness discontinuity.

5.1.1. Flexural stiffness discontinuity

The beam shows an abrupt flexural stiffness change at x, from the value Eyl, to the value (1 — y)Eyly, as
depicted in Fig. 2, and y = 0.5 has been assumed.

For the beam under study the integration constants ¢;, ¢, ¢3, ¢4, evaluated by imposing the boundary
conditions, are

g 1+ — (91 — 16x,] + 9x3)
24Eoly I* + y2xd — 29x0l (217 — 3xol + 2x3)

cl = O; Cy = 0, Cc3 = (3537b,C)

g P+ — ol (30 = 2% — 2331 + 3x))
12E0ly  I* + y2x — 2yxol (217 — 3xol + 2x3)

Cqy = —

(35d)

The closed form solutions in terms of deflection, slope and curvature functions, obtained in Section 3
and given by Egs. (20), (19), (17), respectively, are plotted in Fig. 3 and compared with the solution of
the uniform beam with constant flexural stiffness Eyly. Fig. 3 show the expected continuity of deflection
and slope functions and the discontinuity of the curvature as a consequence of the first order discontinuity
of the slope function clearly shown by Fig. 3b. The abrupt decrement of the flexural stiffness results in a
general increment of the deflection and slope functions with respect to the uniform beam.

In Fig. 4 bending moment and shear force functions, obtained by making use of Egs. (21) and (22), have
been plotted, showing some difference with the uniform beam since the beam under study is statically inde-
terminate and the ¢3 and ¢4 constants depend on x, and 7.

It has to be noted that by substituting the integration constants ¢y, ¢», 3, ¢4 into the deflection function
given by Eq. (20) and making the limit for y — —oo we obtain:

u(x) = 4];1010 (x — x0)[1 — Ulx — x)] (36)

Eq. (36) represents the deflection function of a beam with a rigid stub of length / — xq at the right end, or
analogously of a clamped-clamped beam of length x,.

5.1.2. Slope discontinuity

The case of slope discontinuity located at xq is considered. The beam under study is depicted in Fig. 5
where both the flexural stiffness with a Dirac’s delta and the internal hinge with rotational spring models
have been reported The two models are equivalent under the condition that the stiffness of the rotational
spring is &, as discussed in Section 4, where the constant A4 takes the value 2.013 as indicates in
Appendix A and y = 0.49 fulfilling inequality 0 < y < 1/4 is assumed for the numerical application.

For the beam under study the integration constants ¢, ¢», ¢3, ¢4, evaluated by imposing the boundary
conditions, are




3036 B. Biondi, S. Caddemi | International Journal of Solids and Structures 42 (2005) 3027-3044
0.0E+0 2.4E-4
u(x) | o(x) -
12E-4 T TN
N
1.0E-2 | p \
7/
- 0.0E+0
/
i 7/
2.0E-2 \ s
-1.2E-4 N -~
3.0E-2 T | T | T | T | T -2.4E-4 T | T | T | T | T
0.0 100.0 200.0 300.0 4000 X 500.0 0.0 100.0 200.0 300.0 4000 X 500.0
(@ (b)
-6.0E-6
x(x) |
-3.0E-6
N\ s/
i N /
A\ 4
N
0.0E+0
X -
x -
s -
30E-6 T I T I T I T I T
0.0 100.0 200.0 300.0 4000 X 500.0
(c)

Fig. 3. Solutions of the clamped—-clamped beam: (a) deflection; (b) slope; (c) curvature. (—) Beam with flexural stiffness discontinuity,
(---) uniform beam.

-4.0E+2 4.0E+0
M(x) V(x)
2.0E+0
-2.0E+2
- 0.0E+0
0.0E+0 ’
-2.0E+0
2.0E+2 T T T T T T T T T -4.0E+0 T T T T T T T T T
0.0 100.0 200.0 300.0 400.0 X 500.0 0.0 100.0 200.0 300.0 400.0 X 500.0
@ (b)

Fig. 4. Solutions of the clamped—clamped beam: (a) bending moment; (b) shear force. (—) Beam with flexural stiffness discontinuity,
(---) uniform beam.
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Eyl, E,
11
11
K Xo A
K / v
(@
k(/l
L 50 gm a 0
K %o A
K / A
(b)

Fig. 5. (a) Clamped—clamped beam with slope discontinuity; (b) clamped-clamped beam with internal hinge and rotational spring.

g (1—=9A)P + 6yxl (31 — 8xl + 6x3)
C24Eoly (1 —9A) P+ 4y(P — 3x0l + 3x3)

c1=0; =0, c

(37a,b,c)

g (=) (3P — 4xl — 6l + 12x)
12E01, (1 —9A) P + 4y(* = 3x01 + 3x3)

Cq =

(37d)

The closed form solutions in terms of deflection, slope and curvature functions obtained in Section 4 and
given by Eqs. (27)+29), respectively, are plotted in Fig. 6 and compared with the functions of the uniform
beam. Fig. 6a shows the continuity of the deflection function with an increment with respect to the uniform
beam as a result of the adopted flexural stiffness variation. Fig. 6b shows the expected discontinuity of the
slope function, and Fig. 6¢ shows that the curvature possesses a Dirac’s delta located at x,. In Fig. 7 bend-
ing moment and shear force, given by Egs. (30) and (31), have been plotted and are different from the uni-
form beam since ¢3 and ¢4 are influenced by the singularity at x,, in the statically indeterminate beam, as
shown by Eq. (37¢c,d).

5.2. Boundary discontinuity

In the presented closed form solutions the case of discontinuity located at 0 < x, </ has been consid-
ered in order to avoid any coincidence of the singularity with the boundary conditions. This circumstance
might have caused the impossibility of imposing the boundary conditions to distributions centered at
boundaries.

However in this section we will consider the proposed closed form solutions for x, moving toward the
boundaries of the beam. The limit under study has to be evaluated once the boundary conditions have been
imposed. It will be shown that singularities of the flexural stiffness superimposed on boundary conditions
are able to modify the boundary conditions themselves.

In this section the clamped—clamped beam shown in Fig. 1 and studied in the Section 5.1 is considered.
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Fig. 6. Solutions of the clamped-clamped beam: (a) deflection; (b) slope; (c) curvature. (—) Beam with slope discontinuity, (---)
uniform beam.

5.2.1. Flexural stiffness discontinuity

The case of abrupt flexural stiffness change modeled as the unit step function yU(x — xp) for x( next to
the boundary x = [ represents the circumstance that only a portion of the cross-section of the beam edge is
clamped. Moreover the discontinuity intensity y = 1 leads to no flexural stiffness at xo = /, which represents
the case of free edge of the beam. In fact by substituting the integration constants ¢, ¢,, 3, ¢4 given by Eq.
(35) into the deflection function given by Eq. (20) and making the limit for xo — /, Vy <1, the following
relationship is obtained:

u(x) = 5 4;10]0 (& — 20x + P)x (38)
which represents the deflection function of a clamped—clamped beam of length /. It follows that for xo — /
the discontinuity intensity y does not influence the beam, that results clamped at x = /. A different case is
recovered for y — 1. In fact by substituting the integration constants given by Eq. (35) into the deflection
function given by Eq. (20) and making the limits for y — 1 and for xy — [ the following relationship is
obtained:
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Fig. 7. Solutions of the clamped-clamped beam: (a) bending moment; (b) shear force. (—) Beam with slope discontinuity, (---)
uniform beam.

u(x) = 425010 (2 — 4lx + 61°) = 31U (x — 1)] (39)

which represents for 0 < x </ the deflection function of a cantilever beam of length /.

5.2.2. Slope discontinuity

The case of slope discontinuity modeled as a Dirac’s delta distribution yd(x — x) centered at xo =/ rep-
resents the case of an external support with rotational spring with stiffness k, = 4 g I, Moreover the
value y = 1/4 for the discontinuity intensity leads to the absence of rotational spring in the external support
and the case of clamped-supported beam is recovered.

The solution of this case is obtained by substituting the integration constants ¢y, ¢,, ¢3, ¢4 given by Eq.
(37) into the deflection function given by Eq. (27) and making the limits for xo — / and y — 1/4, and the
following relationship is obtained:

u(x) = 7 Sgolo [(2x2 = Sbx + 3P)x> — P(I - x)U(x — )] (40)

For 0 < x </ Eq. (40) represents the deflection function of a clamped-supported beam of length /.

6. Conclusions

The problem of the integration of the fourth order static governing differential equation of the uniform
Euler—Bernoulli beam in presence of singularities has been treated.

The case of discontinuous flexural stiffness has been modeled by superimposing a unit step function to a
constant flexural stiffness. Superimposition of a Dirac’s delta distribution to a constant flexural stiffness has
been shown to lead to cases with slope discontinuities.

The governing differential equation of an Euler—Bernoulli beam showing flexural stiffness and slope dis-
continuities has been derived, and closed form solutions requiring only the knowledge of the four boundary
conditions have been presented and discussed.

The presented integration procedure for the case of slope discontinuity requires the definition of the
product of distributions, provided in the literature by means of different approaches. The choice concerning
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the approach adopted in the paper, leading to the solution of multiplication of two Dirac’s delta distribu-
tions centered at the same point, finds its justification (proved to be desirable) since has led to the exact
solution usually provided by means of approaches which do not rely on the distribution theory.

It has to be remarked that bending moment and shear force functions do not depend directly on the sin-
gularity intensity whose influence appears only through the boundary conditions. This circumstance can be
explained since bending moment and shear force functions for statically determinate beams are independent
of the flexural stiffness.

Furthermore, closed form expressions for bending moment and shear force functions are identical for
the two types of adopted discontinuities, the differences appear for statically indeterminate beams only
when boundary conditions are imposed.

Slope discontinuity modeled through the flexural stiffness by means of a Dirac’s delta distribution has
been shown to be correspondent to the presence of an internal hinge with rotational spring whose elastic
constant, relating slope discontinuity and bending moment values at the same abscissa, has been provided
explicitly as function of the flexural stiffness discontinuity intensity.

It has to be noted that the presented integration procedure can easily be applied to cases of non-uniform
beams showing singularity. The governing equation can be written in terms of a single deflection function
and closed form expression of the solution can be obtained for those flexural stiffness functions whose exact
integration is given in the literature without singularities.

The cases of singularity centered at the boundaries has been initially neglected in order to avoid addi-
tional problems in the application of the integration rules for distributions. However it has been shown that
the proposed closed form solutions are able to account for cases of singularities centered at the boundaries
provided that the boundary conditions are imposed first. Hence, if boundary conditions of a clamped—
clamped beam are considered first, singularities at boundaries are able to release the external constraints.
The latter circumstance suggests the treatment of a clamped-clamped beam and to account for the real
external constraints as singularities of the flexural stiffness centered at boundary. Such a procedure should
lead to elimination of the solution dependence on the boundary conditions.

It must be pointed out that the integration procedure has been presented for cases with a single
singularity in order to provide the physical interpretation of the proposed stiffness models. The computa-
tional effort required by traditional methods relying on the imposition of the continuity conditions and
avoided by the proposed closed form solutions, although not remarkable for the case of a single singularity,
represents a necessary basis for the development of the case of multiple singularities, possibly of different

types.
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Appendix 1. Definition of the product of two Dirac’s deltas

The adoption of singularities in the flexural stiffness of an Euler—Bernoulli beam modeled as a Dirac’s
delta requires in this paper ad hoc considerations in order to provide physical evidence. In particular it
has been shown in Section 2 haw such a case requires the introduction of the product of two Dirac’s deltas
(Eq. (10)).

In the classical theory of distributions although the product of distributions is well defined the proposed
definitions cannot be extended to he product of two Dirac’s deltas centered at the same point.
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In the literature some theories addressed the problem of definition of new classes of multiplication of
distributions to be applied to two or more Dirac’s deltas centered at the same point.

Usually, theories attempting a definition of the product of distributions rely on: (i) regularization of the
distributions in order to obtain continuous functions able to return to the original distributions by means of
a limiting procedure; (ii) multiplication, in the sense of distributions, of the regularized distributions; (iii)
definition of the product of two or more distributions by means of a limiting procedure applied to the mul-
tiplication of the regularized distributions as defined in step (ii). The theory proposed by Bremermann and
Durand (1961) is based on a regularization of distributions by means of the so called analytic continuation
of a distribution. The Colombeau’s theory (Colombeau, 1984) follows a different approach to define a
regularized version of a distribution, called of the sequential completion. The latter makes use of the so
called J-sequences, and the regularized distribution is defied as the convolution of the original distribution
with the -sequences. It has to be remarked that the above mentioned theories for regularized distributions
do not allow the definition of the product of Dirac’s deltas.

In this appendix a different approach, proposed by Bagarello (1995, 2002), which makes use of both the
above mentioned definitions of regularized distributions in order to introduce a new multiplication for dis-
tributions is reported. The multiplication introduced by Bagarello applies only to distributions for which
both analytic continuation, dependent on a o parameter, and convolution with d-sequences, dependent
on a f§ parameter, exist, and it has been proved to apply to Dirac’s delta and its derivatives. In particular,
according to Bagarello (1995), a regularized distribution d,.q of a Dirac’s delta is considered first by means
of an analytic continuation as follows:

1 1 1
5red (x7_> = (Al])
nO{,

mn* x* + -5

and then another regularized distribution 52/?) is considered by means of the following J-sequence:
00 (x) = n’ d(nx) (A1.2)

for any fixed n and where &(x) is a suitable chosen function with support [—1,1] and such that
f,ll P(x)dx = 1.

According to the multiplication for distributions proposed by Bagarello (1995) the product of two
Dirac’s deltas, making use of the regularized distributions reported in Eqs. (Al.1) and (A1.2) depending
on the choice of the parameters o and f3, is defined as follows:

(3(x)8(x)), (P (x)) = lim h 0P (x) S e <xnl> ¥(x) dx (A1.3)

oo
n—oo |

for any test function ¥(x).
The limit of the sequence defined in Eq. (A1.3) exists if we require the function @(x) appearing in Eq.
(A1.2) to be of the form:

b 1 <1
P(x) = { o {ah | (A1.4)
0 |x|>1
with m a natural number and F a normalization constant and the fulfillment of the inequality:
a—220 (AL.5)

The limit of the sequence in Eq. (A1.3) under the conditions provided by Egs. (A1.4) and (A1.5) defines
the product of two Dirac’s deltas as follows (Bagarello, 1995, 2002):
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(6()3(x)), ,(P(x)) = {ﬁ"s(x)(%)) Z;ﬁ (AL6)
where
A,_:I/l ‘D)S‘) dx (A1.7)

In this paper we adopt the first option provided by Eq. (A1.6) as the product of two Dirac’s deltas which
returns the properties of a single Dirac’s delta if « = 2 is assumed. Furthermore, in order to guarantee the
existence of the integral in Eq. (A1.7) it is assumed j = 2 and m = 2 appearing in Eq. (A1.4) such that:

Azl/1 2 4y — 2013 (A1.8)

n), x2

According to Eq. (A1.6) for o« =2f the product of two Dirac’s deltas both centered at x; is a single
Dirac’s delta and will be adopted throughout the paper by means of the following formal expression:

O(x —x0)0(x —xp) = Ad(x — xp) (A1.9)

where the application of the Dirac’s delta to any test function is implicitly assumed and where the constant
A= A, =12.013 defined by Eq. (A1.8) is adopted.

Appendix 2. Integration procedure of the fourth order governing differential equation

In this section an integration procedure of the fourth order governing differential Eq. (23) for the singu-
lar flexural stiffness expressed by Eq. (8) is presented.
The differential Eq. (23) can be rewritten as follows:

Eoly [(1 — 78 (x — x0))u' (x) — 270" (x — xo)u™ (x) — po! (x — xo)u”(xﬂ = q(x) (A2.1)

Integration of Eq. (A2.1) will be performed by considering all terms containing the Dirac’s delta distribu-
tion d(x — xo) and their derivatives as additional loading terms acting on a uniform beam as follows:

Eolou™ (x) = q(x) (A2.2)
where the augmented loading function g(x) is defined as

g(x) = q(x) + yEolo [0(x — xo)u" (x) + 26" (x — xo)u™ (x) + 6" (x — xo)u (x)] (A2.3)
Solution of the non-homogeneous differential Eq. (A2.2) is sought under the form:

u(x) = u(x) + uy(x) (A2.4)

where u;(x) is the solution of the homogeneous equation associated to Eq. (A2.2) hence given as
up(x) = 1 + cox + ce3x? + exx’ (A2.5)

by means of the introduction of the four integration constants ¢y, ¢,, ¢3, ¢4 to be determined by imposing the
kinematic and mechanic boundary conditions in the solution given by Eq. (A2.4), and where u,(x) is a par-
ticular integral of Eq. (A2.2) sought under the form:

u,(x) = d (x) + da(x)x + d3(x)x* + dy(x)x’ (A2.6)

where functions d;(x), dx(x), d3(x), d4(x) are to be found by replacing Eq. (A2.6) and its derivatives into Eq.
11

(A2.2). Obviously, evaluation of u(x), u;' (x), u," (x), u,¥(x) and substitution in the non-homogeneous Eq.
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(A2.2) provides only one condition, hence evaluation of functions d;(x), d>(x), ds(x), ds(x) requires three
additional conditions as indicated in what follows.
The first derivative of Eq. (A2.6) gives:

u[I,(x) = d}(x) + d5(x)x + d5 (x)x* + d}y(x)x° + dy(x) + 2d3(x)x + 3dy(x)x* (A2.7)

The choice of the first additional condition to be imposed involves the first derivatives of functions d;(x),
dr(x), diy(x), dy (x) appearing in Eq. (A2.7) as follows:

dy(x) + d5(x)x + dy(x)x* + dy(x)x* = 0 (A2.8)
Accounting for Eq. (A2.8) leads to the following constrained form for Eq. (A2.7):

u;(x) = da(x) + 2d5(x)x + 3d4(x)x*; st di(x) +dy(x)x +dy(x)x* +dy(x)x* =0 (A2.9)

which does not involve derivatives of dy(x), dx(x), d3(x), ds(x). In view of Eq. (A2.9) and introducing further
conditions involving the first derivatives of d)(x), dy(x), d3(x), da(x), further derivatives w)! (x), u}' (x) can be
obtained in constrained form as follows:

u}f (x) = 2d3(x) + 6d4(x)x; s.t. di(x) + 2d5(x)x + 3dy(x)x* = 0 (A2.10)
uII,H(x) = 6d4(x); st 2dy(x) +6d(x)x =0 (A2.11)

and finally )Y (x) is given as
u (x) = 6d(x) (A2.12)

P
In order to find the unknown functions d;(x), da(x), ds(x), ds(x) appearing in the particular integral u,(x),

the conditions constraining Eqgs. (A2.9)-(A2.11) together with substitution of Eq. (A2.12) into Eq. (A2.2)
have to be treated as a first order differential system given as follows:

) (x) + db(x)x + d(x)? + d(x) = 0

db(x) 4 2d5(x)x + 3dy(x)x> = 0

2d}(x) + 6d}(x)x =0

6ELody(x) = q(x)

(A2.13)

Solution of the system given by Eq. (A2.13) in terms of d} (x), d5(x), d}(x), d}(x), in view of the definition of
the augmented loading function g(x) provided by Eq. (A2.3), leads to

d\(x) = — ‘égjfj - %f [ ()3 (x — x0) + 26™ ()6 (x — x0) + " (x)8" (x — xo)] (A2.14a)
dl(x) = ggjfj + %xz [ ()8 (x — xo) + 2u™ ()8 (x — x0) + 1™ ()" (x — x0)] (A2.14b)
di(x) = — ;11(5?1); - %x[uw(x)é(x — xo) + 26" ()8 (x — x0) + " (x)8" (x — xo)] (A2.14c)
di(x) = 6’25(’30 + LT ()0 = x0) + 20 ()8! (x = x0) + " (1)0" (v = x0)] (A2.14d)

providing uncoupled equations for the derivatives of the unknown functions d;(x), d>(x), dz(x), da(x).
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